Science Says Wormhole Travel is Real; Can We Use it for Exotic Propulsion?
Once believed to be sci-fi fantasy, new research suggests we may be able to achieve interstellar travel using wormholes as shortcuts through spacetime.
Recently, physicist Pascal Koiran at Ecole Normale Supérieure de Lyon in France published a pre-print study detailing the potential that matter could enter the event horizon of a black hole and pass through a wormhole and exit out the other end intact. Though still highly theoretical, wormholes are believed to be incredibly unstable as they exist as a tunnel between a black hole and a white hole in another part of the universe.
But because nothing, including light, can escape a black hole once it has crossed its event horizon, physicists have believed that matter would need to somehow enter the wormhole outside of the event horizon in order to safely pass through.
Dr. Simeon Hein, director of the Institute for Resonance, explains the mind-bending physics of this theoretical phenomenon.
“So the idea people were beginning to think, ‘well, what happens to the matter and energy that gets condensed and condensed into a black hole?’” Dr. Hein said. “The idea was that it had to be ejected somewhere else beyond that point in space. And that became the idea of a wormhole to another point in spacetime where all the matter and energy would be ejected from the black hole to conserve this idea of symmetry which is the foundation of modern physics — that there’s kind of a basic symmetry to the universe. And so the other side of the wormhole is a white hole.”
If wormholes have been conceptualized by theoretical physics for decades, what is so novel about the mathematics proposed in this recent paper?
“Physicist Pascal Koiran in France, he looked at another way to measure what’s going on in the mathematics of black holes. He used a different metric than Einstein would have used because back in the 1950s, two different physicists, David Finkelstein and Sir Arthur Eddington of the Royal Society in the UK, both proposed that there was this point of no return in the black hole where once you got past a certain point, it was no longer symmetrical, you couldn’t leave anymore, the so-called Schwarzschild radius,” Dr. Hein said.
“Past this point, you would just keep getting more compressed and you would have to go through the wormhole. So, using the so-called Finkelstein-Eddington metric — and a metric, by the way, is kind of the idea of a standard unit of measurement, a standard unit of anything: speed, direction, or position — using this measurement Koiran was able to show that it’s actually more stable than you think; that there is some stability even at the highest level of gravitational compression in a black hole. This would suggest that moving through it, maybe something really would survive.”
While these abstract ideas describing theoretical phenomena light-years away are a fun thought experiment, what kind of practical application could they have for us here on earth, if any?
“What we’re talking about is creating other types of gravitational fields, objects that can create their own inertial and gravitational fields — antigravity. So could this be dangerous? It could result in exotic propulsion systems,” Dr. Hein said.
“ In fact, this could already be a classified topic within the US military because we know, all the people who have looked at these gravitational effects, a lot of it has been funded by the military going all the way back to the 1950s including the US Air Force. So, what we’re touching on here, it’s potentially a very important topic for propulsion and transportation, even the possibilities of weaponization, which is something we don’t want to think about, but we’re talking about real physics here and how matter behaves when it’s compressed to a high degree when the gravitational metrics change and so forth. So, what started out as something really far away, the idea of black holes as just a theoretical possibility has now become something where it could be something we see right here on Earth.”
What's Sending These Mystery Signals From 4,000 Lightyears Away?
A mysterious repeating radio signal from space has been detected that scientists have not seen before. What or who is sending this signal?
Scientists have detected a radio signal from somewhere out in deep space some 4,000 light-years away.
The signal pulsed every 18 minutes and 18 seconds, for 30 to 60 seconds — every time, 18 minutes and 18 seconds. It did this for three months then it stopped. Scientists assume it is a naturally occurring rotating object that, like a lighthouse shining its beacon, will send what appears to be a repeating signal.
But Natasha Hurley-Walker, whose study into this repeating signal was recently published in the journal Nature told Vice, “[T]here are no models that produce such bright radio emission from two objects in orbit with each other, with such precision, and any that would produce any kind of radio waves would also produce X-ray emission, which we don’t see.”
Some think this might be coming from a highly magnetized star called a magnetar. So what does this all mean? Astronomer and Gaia News contributor Marc D’Antonio weighed in on the subject.
“Maybe this strange signal is some weird kind of magnetar that is rotating, but we’re not used to seeing it rotate every 18 minutes, that means a rather slow rotation. So, this is kind of weird, it’s something that doesn’t match any model that we know, and I think it takes us down a new research path to try to figure out just what it is we’re looking at,” D’Antonio said.